Exercise 35

(a) Find the slope of the tangent line to the curve $y=9-2 x^{2}$ at the point $(2,1)$.
(b) Find an equation of this tangent line.

Solution

The slope of the tangent line to $y=9-2 x^{2}$ at the point $(2,1)$ is found by calculating the derivative of $y=f(x)$ and then setting $x=2$. Use the definition of $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[9-2(x+h)^{2}\right]-\left(9-2 x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2(x+h)^{2}+2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2\left(x^{2}+2 x h+h^{2}\right)+2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(-2 x^{2}-4 x h-2 h^{2}\right)+2 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 x h-2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(-4 x-2 h) \\
& =-4 x
\end{aligned}
$$

The desired slope is therefore

$$
f^{\prime}(2)=-4(2)=-8
$$

To determine the equation of the line, use the given point $(2,1)$, this slope, and the point-slope formula.

$$
\begin{gathered}
y-1=-8(x-2) \\
y-1=-8 x+16 \\
y=-8 x+17
\end{gathered}
$$

Below is a graph of both $y=-8 x+17$ and $y=9-2 x^{2}$ versus x. Notice that the line is tangent to the curve at $x=2$.

